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Abstract

Virtual reality (VR) provides an immersive medium for information processing. Gestures offer a natural and intuitive means
of translating cognitive processes into physical actions, making them a promising interaction method to support information
processing in VR. However, how gestures reflect and map abstract cognitive tasks to physical interactions remains
underexplored. To address this gap, this study explored the mental models by which end-users design gestural interactions
to support information processing in VR. Using a gesture elicitation method, 8 participants created 445 gestures representing
|9 cognitive processes in Bloom’s taxonomy. Five categories of mental models were identified: linguistic-symbolic, spatial-
manipulative, metaphoric, social-conventional, and traditional graphical user interface-derived. Furthermore, the study found
that the cognitive process categories affected the mental model adoption, with higher-order cognitive processes prompting
more human-like interaction. These findings suggest the potential for developing more natural interactions for cognitive tasks
and offer guidance for designing gestural interactions in VR.
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Introduction Human information processing refers to the sequence of
cognitive operations that individuals use to perceive, encode,
store, retrieve, and manipulate information (J. R. Anderson,
1990). Further advancing the understanding of cognitive
activities in information processing, Bloom’s taxonomy
(Bloom et al., 1956) provides a practical framework for cog-
. . i nitive processes involved in learning. The revised Bloom’s
mentlng controllers an.d oth§r haptic input dev1ces.. Gestural taxonomy (L. W. Anderson & Krathwohl, 2001) classified 19
interaction offers an lntultlve.means ,Of CXpTessIng com- cognitive activities into a 6-level hierarchy, ranging from
mands through movements aligned with mental concepts lower-order processes of remembering and understanding to

fiVuletlc et a(li.,hE 019; Wang et ?,1"_12_023) ) Pf)locrl.rzsearch has higher-order processes of applying, analyzing, evaluating,
emonstrated that gestures can factlitate embodied cognition g creating (Lutz & Huitt, 2003). In instructional design,

by e.lpprhoprlately mapping cognitive tasks to physical actIQns this taxonomy provides practical guidance for aligning learn-
(Alibali et al., .2014; Dijkstra & P(_)St_’ 2015; SkulmOWSkl, & ing objectives with teaching materials. For example, to target
Bey, 2(.)18)' leeq these‘ charac?erlstlcs, gestural interaction the “analyzing” level, instructional materials might include
'S gons1dered a su1tabl§ interaction method fo translate €08~ (ase studies or data interpretation exercises that prompt stu-
n1t1.ve t?SkS’ suchA as 1nf9rmat10n processing, o phyglcal dents to break down information, identify patterns, and draw
actions in VR. While previous research has explored various inferences. Although originally developed for educational

gestural 1nt§ract10ns in VR, it has pr‘lmanly f.‘ocqsed on daily purposes, it has provided a structured framework that aids in
tasks (Pereira et al., 2015) or specific applications such as

design (Vuletic et al., 2021) or immersive shopping (Wu,
Wang, et al., 2019). How users map abstract cognitive pro- 'North Carolina State University, Raleigh, USA
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. . . pd 1g d. Thi p yd Ag d Corresponding Author:

1nteractloqs remains un §rexp ored. 13 stu y aimme . to Fangyuan Cheng, North Carolina State University, 4101 Fitts-Woolard
address this gap by exploring the mental models influencing Hall, Raleigh, NC 27695-7001, USA.

gesture design for information processing tasks in VR. Email: fcheng5@ncsu.edu

Virtual reality (VR) has demonstrated potential in supporting
information processing by facilitating the visualization and
synthesis of information in tasks such as visual analytics
(Moran et al., 2015) and sense-making (Lisle et al., 2021).
Gestures are a common interaction modality in VR, comple-
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various information processing domains, such as artificial
intelligence (Al) model comprehension ability training (Sahu
et al., 2021) and data visualization evaluation (Burns et al.,
2020).

Gestures are considered a natural mode of interaction with
the surroundings, typically involving movements of the fin-
gers, hands, arms, and upper body (Vuletic et al., 2019).
Gestures and cognitive processes share an intrinsic connec-
tion, as evidenced by research in embodied cognition that
human cognitive processes are fundamentally linked to phys-
ical movements (Varela et al., 2017). In other words, informa-
tion processing is not merely an abstract process confined to
the brain but is influenced by bodily interactions with the
environment. These findings support the rationale and poten-
tial added value of using gestural interaction for information
processing. Virtual reality further facilitates this by enabling
hand-based interaction within a 3D environment. To explore
the design of gestural interaction in VR, previous studies have
widely used the gesture elicitation method, which was ini-
tially applied to surface-based digital systems like touch-
screens (Morris et al., 2010; Wobbrock et al., 2009) and later
adapted to immersive environments (Wu, Luo, et al., 2019).
Gesture elicitation methods involve collecting spontaneous,
user-generated gestures in response to predefined tasks or
functions, then identifying those that are highly guessable and
widely accepted for the task (Vatavu & Wobbrock, 2015).
They effectively capture users’ mental models because they
naturally reflect how users conceptualize interactions based
on their experiences, background, and embodied cognition
(Hostetter & Alibali, 2008). This preliminary study adopted
the cognitive processes outlined in the revised Bloom’s tax-
onomy as representative information processing tasks in VR
to investigate users’ mental models for translating these tasks
into gestural interactions using elicitation methods. The study
was guided by the following research questions (RQs): RQ1.
What types of mental models do users adopt when designing
gestural interaction to perform different cognitive processes
in virtual reality? RQ2. What are the effects of different cog-
nitive processes on the adoption of mental model types in ges-
tural interaction design?

Methods

Participants

Eight participants (5 females, 3 males) aged 22 to 30years
(M=24.88, SD=2.64) were enrolled in this preliminary
study with informed consent, which was approved by the
North Carolina State University Institutional Review Board.
Their academic backgrounds include Computer Science
(n=2), Industrial and Systems Engineering (n=2),
Economics (n=1), Financial Mathematics (n=1), and Textile
Engineering (n=1). Six participants have used VR devices,
with familiarity rated as neutral (n=>5), familiar (n=1), unfa-
miliar (n=1), and very unfamiliar (n=1). Four participants

had prior experience with gesture-based input, and familiar-
ity was rated as neutral (n=3), unfamiliar (n=3), familiar
(n=1), and very unfamiliar (n=1).

Procedure and Task

After being introduced to the study, participants completed
the gesture elicitation task in a virtual environment, which
was created and rendered using Unity Engine (2018.4.28f1,
https://unity3d.com/) and delivered via a head-mounted dis-
play (HMD; Oculus Quest 3, Meta). The environment pre-
sented referents that depicted the “before” and “after” states
for each of the 19 cognitive processes listed in the revised
Bloom’s taxonomy, thereby helping participants contextual-
ize the task. Referents were primarily text-based and static,
consisting of information panels that visually represented
changes in content or structure. For example, in the cognitive
process of “summarizing,” the before state was an informa-
tion panel displaying a detailed paragraph, while the after
state was another panel with a concise outline of its content
(Figure 1). Participants were asked to design at least three
appropriate and distinct gestures to bridge the transition
between the “before” and “after” states, and then explain the
rationale behind their designs. To facilitate data collection,
participants were asked to perform each gesture three times.
The presentation order of the cognitive processes was coun-
terbalanced to control order effects. Participants’ movements
were video recorded, and any verbal expressions were audio
recorded. Each designed gesture was documented in real
time by researchers through written notes.

Data Analysis

Video and audio recording and notes were used for inductive
thematic coding of participants’ mental models during gesture
design by two researchers independently. The form of the
gestures, movement paths, and participants’ explanations
served as the reference materials. Any discrepancies were
resolved through discussion. The resulting coding categories
of mental models were then used as dependent variables,
while the six categories of cognitive processes from Bloom’s
taxonomy were used as independent variables. Instead of a
traditional null hypothesis significance testing, a Bayesian
generalized linear mixed model (GLMM) was employed. In
brief, a Bayesian GLMM uses Bayesian methods (i.e., updates
prior beliefs with new data or posterior beliefs in the form of
probabilities) and extends linear regression to account for the
multinomial nature of variables, repeated measures, and ran-
dom effects of non-normal data. Weakly informative priors
provided by the brms package in R were adopted since there
was not a lot of strong prior evidence in the literature for this
type of study (Biirkner, 2017). The model was estimated
using Markov chain Monte Carlo sampling with four chains
(4,000 iterations per chain, 2,000 warm-up iterations;
Biirkner, 2017). All parameters demonstrated sufficient
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Figure |. Virtual environment and the referent for the task.

convergence ( R =1.00), and effective sample sizes exceeded
2,000 for all estimates, indicating high sampling efficiency
and stable posterior inference. Contrast estimates (Est.) of the
differences in predicted log-odds of adopting specific mental
models between cognitive process categories were computed,
along with standard errors (SE) and 95% credible intervals
(CI). The posterior probability of direction (pd) was also
reported, where a pd of .99 indicates 99% certainty in the
effect’s direction.

Results

The elicitation task yielded 445 gesture designs for all 19 cog-
nitive processes combined. Five distinct types of user mental
models in gestures design were identified: linguistic-sym-
bolic (n=154), spatial-manipulative (n=136), metaphoric
(n=55), social-conventional (n=23), and graphical user
interface (GUI)-derived (n=21) mental model (Table 1).

The linguistic-symbolic mental model is based on lan-
guage, writing conventions, and symbolic notation, where
users conceptualize gestures by referencing familiar written
symbols and characters. For example, participants traced let-
ters in the air to represent corresponding cognitive functions,
such as drawing a letter “P” to indicate “planning,” or drew
checkmarks and underlines to signify “checking” and “rec-
ognizing.” The spatial-manipulative mental model is
grounded in the repositioning or transformation of virtual
information panels. This was evident in gestures such as

pinching two virtual panels together to merge them or flip-
ping a panel to access information on its reverse side.

The third category relies on metaphorical associations,
where gestures map cognitive processes onto physical
objects, processes, or phenomena. For example, users simu-
lated a “magic wand” by twirling their index finger in the air
to represent “generating,” or enacted a blooming flower to
symbolize “producing.” The social-conventional mental
model is informed by socially recognized gestures and every-
day bodily actions, as well as culturally conventional move-
ments used in communication. Examples include placing a
hand on the chin to indicate “thinking of a plan” for “plan-
ning” or spreading open the palms to express “what’s next?”
for “inferring.” The GUI-derived mental model refers to
interaction habits from traditional GUI-based computing
devices, such as computers or tablets, where users transfer
familiar input methods into VR. For example, participants
performed gestures such as double-tapping in the air to simu-
late a mouse click for “recognizing” or long-pressing for
“explaining.”

A GLMM was fitted to examine the effects of cognitive
process categories on mental model categories. The Bayes
Factor (BF) analysis (log,,(BF)>20) revealed that the full
model, compared to the reduced model that excluded cogni-
tive processes as predictor variables, significantly better
explained the data. A log,,(BF) >2 is considered decisive
evidence (Kass & Raftery, 1995). The predicted probabilities
of adopting mental models across cognitive process
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Table I. Five types of mental models and representative examples.

Types Representative examples
Linguistic-symbolic P This is a
sentence.

drawing a letter “P” [Planning]

b

Spatial-manipulative

pinching two panels together to merge them

[Executing]

Metaphoric "

=

drawing underlines on the contents
[Recognizing]

R
flipping a panel to access information on its
reverse side [Checking]
R
QA
My

\
A

enacting an opening flower [Producing]

simulating a “magic wand” using the index finger

[Generating]
<-

Social-conventional

placing a hand on the chin [Planning]

GUI-derived S AR

open the palms to express “what’s next?”
[Inferring]

\!'s Hold

double-tapping to simulate mouse clicks

[Recognizing]

long-pressing [Explaining]

Note. The labels in square brackets indicate the cognitive process represented by each gesture.

categories are shown in Figure 2, which illustrates that the
full model, compared to the reduced model, captures more
variations across cognitive processes. These results revealed
the notable effect of cognitive process categories on the men-
tal model adoption.

Figure 3 shows the proportional distribution of five types
of mental models within each cognitive process category. The
results indicated that the Evaluate category increased the
likelihood of employing the linguistic-symbolic mental
model than Remember (Est.=3.07, SE=1.29, CI1[0.89, 5.97],
pd=.998) and Understand (Est.=2.28, SE=1.25, CI [0.23,
5.17], pd=.986), and increased the likelihood of the social-
conventional mental model than Remember (Est.=2.47,
SE=1.41, CI [0.02, 5.6], pd=.978), Understand (Est.=3.88,
SE=1.55, CI [l.16, 7.31], pd=.998), Apply (Est.=3.09,
SE=1.96, C1[0.37, 7.34], pd=.96), and Analyze (Est.=3.29,
SE=1.59, CI [0.5, 6.87], pd=.989). The Create category
increased the likelihood of the metaphoric mental model than

Remember (Est.=3.1, SE=1.32, CI [0.89, 6.12], pd=.998),
Understand (Est.=2.61, SE=1.28, CI1[0.51, 5.58], pd=.995),
Apply (Est.=4.36, SE=1.93, CI [1.03, 8.65], pd=.995), and
Analyze (Est.=3.24, SE=1.39, CI [0.86, 6.32], pd=.997). 1t
increased the likelihood of the social-conventional mental
model than Remember (Est.=2.52, SE=1.4, CI [0.13, 5.65],
pd=.976), Understand (Est.=3.94, SE=1.53, CI [1.3, 7.39],
pd=.995), and Analyze (Est.=3.33, SE=1.59, CI [0.55,
6.79], pd=.991). 1t also increased the likelihood of the lin-
guistic-symbolic mental model over the Remember
(Est.=2.38, SE=1.32, CI [0.19, 5.37], pd=.985). The
Remember category decreased the likelihood of the spatial-
manipulative mental model than Understand (Est.=—2.51,
SE=0.75, CI [-3.98, —1.07], pd=.999), Apply (Est.=—2.71,
SE=1.03, CI[-4.92,—0.85], pd=.998), Analyze (Est.=—1.97,
SE=0.85,CI[-3.68,—0.34], pd=.990), Evaluate (Est.=—2.49,
SE=1.37,CI[-5.5,—0.1], pd=.978), and Create (Est.=—3.34,
SE=1.37,CI[-1.05, —6.43], pd=.998).



Cheng et al.

-~ GUI-derived -®- Spatial-manipulative  -®- Linguistic-symbolic

-0~ Metaphoric Social-conventional

— Full model

-+ Reduced model

0.754

0.50

Predicted Probability

0.25+4

0.00

T T T T T T
Remember Understand Analyze Apply Evaluate  Create
Cognitive Process Category

Figure 2. Predicted probabilities of adopting five types of mental
models across six cognitive process categories.

Note. Error bars indicate 95% credible intervals for each predicted
probability.

Discussion

To address RQ1, this study identified five types of mental
models adopted in gesture designs for cognitive processing
in VR: linguistic-symbolic, spatial-manipulative, meta-
phoric, social-conventional, and GUI-derived mental mod-
els. Among these, the linguistic-symbolic mental model was
the most prevalent, which may be attributed to their intuitive
alignment with verbal or conceptual representations of cog-
nitive tasks. Specifically, many cognitive processes in learn-
ing and problem-solving, such as summarizing, classifying,
or explaining, inherently involve the manipulation of abstract
concepts and linguistic structures. As a result, participants
may have naturally gravitated toward linguistic or symbolic
gestures, such as writing abbreviations or using shorthand
symbols like checkmarks, that correspond to familiar verbal
or textual conventions. Furthermore, the findings revealed
that VR affordances tend to elicit distinct mental models,
particularly spatial-manipulative, metaphoric, and social-
conventional types, which are less commonly associated
with traditional interfaces. Unlike conventional media such
as computers and tablets, VR offers a 3D interaction space
that allows users to interact with digital content through
embodied and spatial actions. The spatial-manipulative men-
tal models leverage this affordance by enabling users to
directly manipulate virtual information through gestures
such as grabbing or flipping. The emergence of metaphoric
mental models further highlights how VR enhances users’

Il GUI-derived
[ Metaphoric

T T
Evaluate Create

Ml Spatial-manipulative M Linguistic-symbolic
Social-conventional

1.00

°

S

>
1

Proportion of mental model types
o
3
1

0.25+

T T T T
Remember Understand Analyze Apply
Cognitive Process Category

Figure 3. Distribution of five mental model types across
cognitive process categories.

ability to integrate real-world interaction patterns into virtual
experiences. It enables users to draw on familiar physical-
world analogies and naturally enact spatial metaphors,
thereby intuitively mapping real-world experiences to virtual
actions. For example, opening up a closed fist, reminiscent
of a flower blooming, can metaphorically represent mean-
ings such as “expand” or “create.” Moreover, social-conven-
tional mental models illustrate VR’s potential to support
human-computer interactions that more closely resemble
interpersonal communication. In these cases, gestures often
reflect socially understood conventions to facilitate and
bridge social interaction within virtual environments. Under
such circumstances, the VR system may no longer be per-
ceived merely as a machine, but rather as an entity capable of
engaging in human-like exchanges.

In contrast, the GUI-derived mental models were the least
frequently employed. This pattern suggests that although
users may still be influenced by traditional interaction para-
digms shaped by screen-based media, such influence was
relatively limited. Instead, participants tended to explore
new forms of interaction that are better suited to support cog-
nitive tasks in immersive VR. Collectively, these findings
underscore VR’s potential to support a broader and more
natural range of interactions that go beyond the abstract
operations typical of traditional graphical user interfaces in
cognitive tasks.

To address RQ?2, this study revealed a notable effect of cog-
nitive process categories on mental model adoption during
gesture design. It also compared the predictive probabilities of
gesture categories across different cognitive processes. The
observed differences may be attributed to the distinct cogni-
tive functions associated with each gesture category.
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Specifically, the Evaluate category could prompt participants
to relate experiences of assessing or being assessed using
paper-based materials, such as exam answer sheets, thereby
naturally evoking written symbols like checkmarks or ques-
tion marks. This, in turn, increased the occurrence of linguis-
tic-symbolic mental models. The Create category involves
generating or producing novel information or models, prompt-
ing participants to use gestures to represent or metaphorically
depict objects being created or the process of creation, thereby
increasing the prevalence of metaphoric mental models. The
Remember category primarily focuses on retrieving informa-
tion that is not immediately available in the current context,
rather than organizing existing information. This led to fewer
gestures related to information manipulation. Instead, partici-
pants may adopt alternative mental models, such as the lin-
guistic-symbolic model, where underlying words represent the
need to recall more specific details, or the metaphoric model,
where pointing to a clenched fist symbolizes the brain that
reflects an attempt to seek the desired information with the
help of the VR system. Furthermore, social-conventional men-
tal models were more frequently employed in both the Create
and Evaluate categories. This suggests that in higher-order
cognitive processes, participants are more likely to perceive
information processing support as a social entity rather than a
passive tool, leading them to use socially conventional ges-
tures for more interactive, human-like communication.

Limitations were acknowledged in this study. Despite the
445 generated gestures serving as an analytical starting point,
the small sample size may affect classification and the
observed effects of cognitive processes on mental models.
The individual differences related to cultural background
and educational level may influence gesture design and men-
tal model adoption. The coding approach may introduce
researcher bias, and alternative interpretations are possible.
Future research could further explore gesture sets corre-
sponding to specific cognitive tasks and refine gesture char-
acteristics at a finer granularity.

Conclusion

To explore users’ mental models for translating informa-
tion processing tasks into gestural interaction in VR, this
study conducted an elicitation study with eight partici-
pants. Five types of mental models were identified for
designing gestural interactions across nineteen cognitive
processes. The results also demonstrated that cognitive
process categories affected the adoption of these mental
models. These findings can assist researchers and develop-
ers in strategically designing gestural interaction for cog-
nitive tasks in VR.
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