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Introduction

Virtual reality (VR) has demonstrated potential in supporting 
information processing by facilitating the visualization and 
synthesis of information in tasks such as visual analytics 
(Moran et al., 2015) and sense-making (Lisle et al., 2021). 
Gestures are a common interaction modality in VR, comple-
menting controllers and other haptic input devices. Gestural 
interaction offers an intuitive means of expressing com-
mands through movements aligned with mental concepts 
(Vuletic et al., 2019; Wang et al., 2023). Prior research has 
demonstrated that gestures can facilitate embodied cognition 
by appropriately mapping cognitive tasks to physical actions 
(Alibali et al., 2014; Dijkstra & Post, 2015; Skulmowski & 
Rey, 2018). Given these characteristics, gestural interaction 
is considered a suitable interaction method to translate cog-
nitive tasks, such as information processing, to physical 
actions in VR. While previous research has explored various 
gestural interactions in VR, it has primarily focused on daily 
tasks (Pereira et  al., 2015) or specific applications such as 
design (Vuletic et  al., 2021) or immersive shopping (Wu, 
Wang, et al., 2019). How users map abstract cognitive pro-
cesses in information processing tasks to physical gestural 
interactions remains underexplored. This study aimed to 
address this gap by exploring the mental models influencing 
gesture design for information processing tasks in VR.

Human information processing refers to the sequence of 
cognitive operations that individuals use to perceive, encode, 
store, retrieve, and manipulate information (J. R. Anderson, 
1990). Further advancing the understanding of cognitive 
activities in information processing, Bloom’s taxonomy 
(Bloom et al., 1956) provides a practical framework for cog-
nitive processes involved in learning. The revised Bloom’s 
taxonomy (L. W. Anderson & Krathwohl, 2001) classified 19 
cognitive activities into a 6-level hierarchy, ranging from 
lower-order processes of remembering and understanding to 
higher-order processes of applying, analyzing, evaluating, 
and creating (Lutz & Huitt, 2003). In instructional design, 
this taxonomy provides practical guidance for aligning learn-
ing objectives with teaching materials. For example, to target 
the “analyzing” level, instructional materials might include 
case studies or data interpretation exercises that prompt stu-
dents to break down information, identify patterns, and draw 
inferences. Although originally developed for educational 
purposes, it has provided a structured framework that aids in 
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various information processing domains, such as artificial 
intelligence (AI) model comprehension ability training (Sahu 
et al., 2021) and data visualization evaluation (Burns et al., 
2020).

Gestures are considered a natural mode of interaction with 
the surroundings, typically involving movements of the fin-
gers, hands, arms, and upper body (Vuletic et  al., 2019). 
Gestures and cognitive processes share an intrinsic connec-
tion, as evidenced by research in embodied cognition that 
human cognitive processes are fundamentally linked to phys-
ical movements (Varela et al., 2017). In other words, informa-
tion processing is not merely an abstract process confined to 
the brain but is influenced by bodily interactions with the 
environment. These findings support the rationale and poten-
tial added value of using gestural interaction for information 
processing. Virtual reality further facilitates this by enabling 
hand-based interaction within a 3D environment. To explore 
the design of gestural interaction in VR, previous studies have 
widely used the gesture elicitation method, which was ini-
tially applied to surface-based digital systems like touch-
screens (Morris et al., 2010; Wobbrock et al., 2009) and later 
adapted to immersive environments (Wu, Luo, et al., 2019). 
Gesture elicitation methods involve collecting spontaneous, 
user-generated gestures in response to predefined tasks or 
functions, then identifying those that are highly guessable and 
widely accepted for the task (Vatavu & Wobbrock, 2015). 
They effectively capture users’ mental models because they 
naturally reflect how users conceptualize interactions based 
on their experiences, background, and embodied cognition 
(Hostetter & Alibali, 2008). This preliminary study adopted 
the cognitive processes outlined in the revised Bloom’s tax-
onomy as representative information processing tasks in VR 
to investigate users’ mental models for translating these tasks 
into gestural interactions using elicitation methods. The study 
was guided by the following research questions (RQs): RQ1. 
What types of mental models do users adopt when designing 
gestural interaction to perform different cognitive processes 
in virtual reality? RQ2. What are the effects of different cog-
nitive processes on the adoption of mental model types in ges-
tural interaction design?

Methods

Participants

Eight participants (5 females, 3 males) aged 22 to 30 years 
(M = 24.88, SD = 2.64) were enrolled in this preliminary 
study with informed consent, which was approved by the 
North Carolina State University Institutional Review Board. 
Their academic backgrounds include Computer Science 
(n = 2), Industrial and Systems Engineering (n = 2), 
Economics (n = 1), Financial Mathematics (n = 1), and Textile 
Engineering (n = 1). Six participants have used VR devices, 
with familiarity rated as neutral (n = 5), familiar (n = 1), unfa-
miliar (n = 1), and very unfamiliar (n = 1). Four participants 

had prior experience with gesture-based input, and familiar-
ity was rated as neutral (n = 3), unfamiliar (n = 3), familiar 
(n = 1), and very unfamiliar (n = 1).

Procedure and Task

After being introduced to the study, participants completed 
the gesture elicitation task in a virtual environment, which 
was created and rendered using Unity Engine (2018.4.28f1, 
https://unity3d.com/) and delivered via a head-mounted dis-
play (HMD; Oculus Quest 3, Meta). The environment pre-
sented referents that depicted the “before” and “after” states 
for each of the 19 cognitive processes listed in the revised 
Bloom’s taxonomy, thereby helping participants contextual-
ize the task. Referents were primarily text-based and static, 
consisting of information panels that visually represented 
changes in content or structure. For example, in the cognitive 
process of “summarizing,” the before state was an informa-
tion panel displaying a detailed paragraph, while the after 
state was another panel with a concise outline of its content 
(Figure 1). Participants were asked to design at least three 
appropriate and distinct gestures to bridge the transition 
between the “before” and “after” states, and then explain the 
rationale behind their designs. To facilitate data collection, 
participants were asked to perform each gesture three times. 
The presentation order of the cognitive processes was coun-
terbalanced to control order effects. Participants’ movements 
were video recorded, and any verbal expressions were audio 
recorded. Each designed gesture was documented in real 
time by researchers through written notes.

Data Analysis

Video and audio recording and notes were used for inductive 
thematic coding of participants’ mental models during gesture 
design by two researchers independently. The form of the 
gestures, movement paths, and participants’ explanations 
served as the reference materials. Any discrepancies were 
resolved through discussion. The resulting coding categories 
of mental models were then used as dependent variables, 
while the six categories of cognitive processes from Bloom’s 
taxonomy were used as independent variables. Instead of a 
traditional null hypothesis significance testing, a Bayesian 
generalized linear mixed model (GLMM) was employed. In 
brief, a Bayesian GLMM uses Bayesian methods (i.e., updates 
prior beliefs with new data or posterior beliefs in the form of 
probabilities) and extends linear regression to account for the 
multinomial nature of variables, repeated measures, and ran-
dom effects of non-normal data. Weakly informative priors 
provided by the brms package in R were adopted since there 
was not a lot of strong prior evidence in the literature for this 
type of study (Bürkner, 2017). The model was estimated 
using Markov chain Monte Carlo sampling with four chains 
(4,000 iterations per chain, 2,000 warm-up iterations; 
Bürkner, 2017). All parameters demonstrated sufficient 
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Figure 1.  Virtual environment and the referent for the task.

convergence ( R  = 1.00), and effective sample sizes exceeded 
2,000 for all estimates, indicating high sampling efficiency 
and stable posterior inference. Contrast estimates (Est.) of the 
differences in predicted log-odds of adopting specific mental 
models between cognitive process categories were computed, 
along with standard errors (SE) and 95% credible intervals 
(CI). The posterior probability of direction (pd) was also 
reported, where a pd of .99 indicates 99% certainty in the 
effect’s direction.

Results

The elicitation task yielded 445 gesture designs for all 19 cog-
nitive processes combined. Five distinct types of user mental 
models in gestures design were identified: linguistic-sym-
bolic (n = 154), spatial-manipulative (n = 136), metaphoric 
(n = 55), social-conventional (n = 23), and graphical user 
interface (GUI)-derived (n = 21) mental model (Table 1).

The linguistic-symbolic mental model is based on lan-
guage, writing conventions, and symbolic notation, where 
users conceptualize gestures by referencing familiar written 
symbols and characters. For example, participants traced let-
ters in the air to represent corresponding cognitive functions, 
such as drawing a letter “P” to indicate “planning,” or drew 
checkmarks and underlines to signify “checking” and “rec-
ognizing.” The spatial-manipulative mental model is 
grounded in the repositioning or transformation of virtual 
information panels. This was evident in gestures such as 

pinching two virtual panels together to merge them or flip-
ping a panel to access information on its reverse side.

The third category relies on metaphorical associations, 
where gestures map cognitive processes onto physical 
objects, processes, or phenomena. For example, users simu-
lated a “magic wand” by twirling their index finger in the air 
to represent “generating,” or enacted a blooming flower to 
symbolize “producing.” The social-conventional mental 
model is informed by socially recognized gestures and every-
day bodily actions, as well as culturally conventional move-
ments used in communication. Examples include placing a 
hand on the chin to indicate “thinking of a plan” for “plan-
ning” or spreading open the palms to express “what’s next?” 
for “inferring.” The GUI-derived mental model refers to 
interaction habits from traditional GUI-based computing 
devices, such as computers or tablets, where users transfer 
familiar input methods into VR. For example, participants 
performed gestures such as double-tapping in the air to simu-
late a mouse click for “recognizing” or long-pressing for 
“explaining.”

A GLMM was fitted to examine the effects of cognitive 
process categories on mental model categories. The Bayes 
Factor (BF) analysis ( log BF10 ( ) > 20) revealed that the full 
model, compared to the reduced model that excluded cogni-
tive processes as predictor variables, significantly better 
explained the data. A log BF10 ( )  > 2 is considered decisive 
evidence (Kass & Raftery, 1995). The predicted probabilities 
of adopting mental models across cognitive process 
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categories are shown in Figure 2, which illustrates that the 
full model, compared to the reduced model, captures more 
variations across cognitive processes. These results revealed 
the notable effect of cognitive process categories on the men-
tal model adoption.

Figure 3 shows the proportional distribution of five types 
of mental models within each cognitive process category. The 
results indicated that the Evaluate category increased the 
likelihood of employing the linguistic-symbolic mental 
model than Remember (Est. = 3.07, SE = 1.29, CI [0.89, 5.97], 
pd = .998) and Understand (Est. = 2.28, SE = 1.25, CI [0.23, 
5.17], pd = .986), and increased the likelihood of the social-
conventional mental model than Remember (Est. = 2.47, 
SE = 1.41, CI [0.02, 5.6], pd = .978), Understand (Est. = 3.88, 
SE = 1.55, CI [1.16, 7.31], pd = .998), Apply (Est. = 3.09, 
SE = 1.96, CI [0.37, 7.34], pd = .96), and Analyze (Est. = 3.29, 
SE = 1.59, CI [0.5, 6.87], pd = .989). The Create category 
increased the likelihood of the metaphoric mental model than 

Remember (Est. = 3.1, SE = 1.32, CI [0.89, 6.12], pd = .998), 
Understand (Est. = 2.61, SE = 1.28, CI [0.51, 5.58], pd = .995), 
Apply (Est. = 4.36, SE = 1.93, CI [1.03, 8.65], pd = .995), and 
Analyze (Est. = 3.24, SE = 1.39, CI [0.86, 6.32], pd = .997). It 
increased the likelihood of the social-conventional mental 
model than Remember (Est. = 2.52, SE = 1.4, CI [0.13, 5.65], 
pd = .976), Understand (Est. = 3.94, SE = 1.53, CI [1.3, 7.39], 
pd = .995), and Analyze (Est. = 3.33, SE = 1.59, CI [0.55, 
6.79], pd = .991). It also increased the likelihood of the lin-
guistic-symbolic mental model over the Remember 
(Est. = 2.38, SE = 1.32, CI [0.19, 5.37], pd = .985). The 
Remember category decreased the likelihood of the spatial-
manipulative mental model than Understand (Est. = −2.51, 
SE = 0.75, CI [−3.98, −1.07], pd = .999), Apply (Est. = −2.71, 
SE = 1.03, CI [−4.92, −0.85], pd = .998), Analyze (Est. = −1.97, 
SE = 0.85, CI [−3.68, −0.34], pd = .990), Evaluate (Est. = −2.49, 
SE = 1.37, CI [−5.5, −0.1], pd = .978), and Create (Est. = −3.34, 
SE = 1.37, CI [−1.05, −6.43], pd = .998).

Table 1.  Five types of mental models and representative examples.

Types Representative examples

Linguistic-symbolic

drawing a letter “P” [Planning]
drawing underlines on the contents 

[Recognizing]
Spatial-manipulative

pinching two panels together to merge them 
[Executing]

flipping a panel to access information on its 
reverse side [Checking]

Metaphoric

simulating a “magic wand” using the index finger 
[Generating]

enacting an opening flower [Producing]

Social-conventional

placing a hand on the chin [Planning]

open the palms to express “what’s next?” 
[Inferring]

GUI-derived

double-tapping to simulate mouse clicks 
[Recognizing]

long-pressing [Explaining]

Note. The labels in square brackets indicate the cognitive process represented by each gesture.
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Discussion

To address RQ1, this study identified five types of mental 
models adopted in gesture designs for cognitive processing 
in VR: linguistic-symbolic, spatial-manipulative, meta-
phoric, social-conventional, and GUI-derived mental mod-
els. Among these, the linguistic-symbolic mental model was 
the most prevalent, which may be attributed to their intuitive 
alignment with verbal or conceptual representations of cog-
nitive tasks. Specifically, many cognitive processes in learn-
ing and problem-solving, such as summarizing, classifying, 
or explaining, inherently involve the manipulation of abstract 
concepts and linguistic structures. As a result, participants 
may have naturally gravitated toward linguistic or symbolic 
gestures, such as writing abbreviations or using shorthand 
symbols like checkmarks, that correspond to familiar verbal 
or textual conventions. Furthermore, the findings revealed 
that VR affordances tend to elicit distinct mental models, 
particularly spatial-manipulative, metaphoric, and social-
conventional types, which are less commonly associated 
with traditional interfaces. Unlike conventional media such 
as computers and tablets, VR offers a 3D interaction space 
that allows users to interact with digital content through 
embodied and spatial actions. The spatial-manipulative men-
tal models leverage this affordance by enabling users to 
directly manipulate virtual information through gestures 
such as grabbing or flipping. The emergence of metaphoric 
mental models further highlights how VR enhances users’ 

ability to integrate real-world interaction patterns into virtual 
experiences. It enables users to draw on familiar physical-
world analogies and naturally enact spatial metaphors, 
thereby intuitively mapping real-world experiences to virtual 
actions. For example, opening up a closed fist, reminiscent 
of a flower blooming, can metaphorically represent mean-
ings such as “expand” or “create.” Moreover, social-conven-
tional mental models illustrate VR’s potential to support 
human-computer interactions that more closely resemble 
interpersonal communication. In these cases, gestures often 
reflect socially understood conventions to facilitate and 
bridge social interaction within virtual environments. Under 
such circumstances, the VR system may no longer be per-
ceived merely as a machine, but rather as an entity capable of 
engaging in human-like exchanges.

In contrast, the GUI-derived mental models were the least 
frequently employed. This pattern suggests that although 
users may still be influenced by traditional interaction para-
digms shaped by screen-based media, such influence was 
relatively limited. Instead, participants tended to explore 
new forms of interaction that are better suited to support cog-
nitive tasks in immersive VR. Collectively, these findings 
underscore VR’s potential to support a broader and more 
natural range of interactions that go beyond the abstract 
operations typical of traditional graphical user interfaces in 
cognitive tasks.

To address RQ2, this study revealed a notable effect of cog-
nitive process categories on mental model adoption during 
gesture design. It also compared the predictive probabilities of 
gesture categories across different cognitive processes. The 
observed differences may be attributed to the distinct cogni-
tive functions associated with each gesture category. 

Figure 2.  Predicted probabilities of adopting five types of mental 
models across six cognitive process categories.
Note. Error bars indicate 95% credible intervals for each predicted 
probability.

Figure 3.  Distribution of five mental model types across 
cognitive process categories.
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Specifically, the Evaluate category could prompt participants 
to relate experiences of assessing or being assessed using 
paper-based materials, such as exam answer sheets, thereby 
naturally evoking written symbols like checkmarks or ques-
tion marks. This, in turn, increased the occurrence of linguis-
tic-symbolic mental models. The Create category involves 
generating or producing novel information or models, prompt-
ing participants to use gestures to represent or metaphorically 
depict objects being created or the process of creation, thereby 
increasing the prevalence of metaphoric mental models. The 
Remember category primarily focuses on retrieving informa-
tion that is not immediately available in the current context, 
rather than organizing existing information. This led to fewer 
gestures related to information manipulation. Instead, partici-
pants may adopt alternative mental models, such as the lin-
guistic-symbolic model, where underlying words represent the 
need to recall more specific details, or the metaphoric model, 
where pointing to a clenched fist symbolizes the brain that 
reflects an attempt to seek the desired information with the 
help of the VR system. Furthermore, social-conventional men-
tal models were more frequently employed in both the Create 
and Evaluate categories. This suggests that in higher-order 
cognitive processes, participants are more likely to perceive 
information processing support as a social entity rather than a 
passive tool, leading them to use socially conventional ges-
tures for more interactive, human-like communication.

Limitations were acknowledged in this study. Despite the 
445 generated gestures serving as an analytical starting point, 
the small sample size may affect classification and the 
observed effects of cognitive processes on mental models. 
The individual differences related to cultural background 
and educational level may influence gesture design and men-
tal model adoption. The coding approach may introduce 
researcher bias, and alternative interpretations are possible. 
Future research could further explore gesture sets corre-
sponding to specific cognitive tasks and refine gesture char-
acteristics at a finer granularity.

Conclusion

To explore users’ mental models for translating informa-
tion processing tasks into gestural interaction in VR, this 
study conducted an elicitation study with eight partici-
pants. Five types of mental models were identified for 
designing gestural interactions across nineteen cognitive 
processes. The results also demonstrated that cognitive 
process categories affected the adoption of these mental 
models. These findings can assist researchers and develop-
ers in strategically designing gestural interaction for cog-
nitive tasks in VR.
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